Application Of Definite Integrals:-

1. Area under the Curve:

Consider the curve y = f(x), then the area under the curve y = f(x) and the ordinate x = a and x = b and the x axis is given by

$$A = \int_{x=a}^{x=b} y dx \qquad \text{OR} \qquad A = \int_{x=a}^{x=b} f(x) dx.$$

The area under the curve x = g(y), the ordinate y = c and y = d and x axis is

Ex.1 Obtain the area between line y = 8x, x axis and ordinates at x = 2 and x = 6 **Soln.:**

Area bounded =
$$\int_{x=2}^{x=6} y dx = \int_{x=2}^{x=6} 8x dx$$

= $8 \left[\frac{x^2}{2} \right]_2^6$... $\int_a^b x^n dx = \left[\frac{x^{n+1}}{n+1} \right]_a^b$
= $4 \left[x^2 \right]_2^6$
= $4 \left[6^2 \cdot 2^2 \right]$
= 4 [36-4]

Page 1 of 40

Ex.2: Find the area bounded by the curve $y = x^3$, x axis and the coordinate. x = 1, x = 3Soln.: The area bounded by the curve $y = x^3$, x axis and the coordinate. x = 1, x = 3

$$\therefore \text{ The required area } A = \int_{1}^{3} y.dx$$
$$= \int_{1}^{3} x^{3}.dx = \left[\frac{x^{3+1}}{3+1}\right]_{1}^{3} = \left[\frac{x^{4}}{4}\right]_{1}^{3}$$
$$= \frac{1}{4} \left[x^{4}\right]_{1}^{3} = \frac{1}{4} \left[3^{4} - 1^{4}\right]$$
$$= \frac{1}{4} \left[81 - 1\right] = \frac{1}{4} \left[80\right] = 20 \text{ unit}^{2}$$

Ex.3: Find the area of the region bounded by the curve $y = 4x^2$, x axis and the lines. x = 1 and x = 2.

Soln.: The required area is as shown in Fig.

:. Required area
$$A = \int_{1}^{2} y dx = \int_{1}^{2} 4x^{2} dx$$

 $= 4\int_{1}^{2} x^{2} dx = 4\left[\frac{x^{3}}{3}\right]_{1}^{2}$
 $= \frac{4}{3}\left[(2)^{3} - (1)^{3}\right]$
 $= \frac{4}{3}(8 - 1) = \frac{4}{3}(7)$
 $= \frac{28}{3}$ square units.

Ex.4: Find the area bounded by $y = 4x - x^2$, meeting the x axis and the ordinates x = 1, x = 3. Soln.: here given curve $y = 4x - x^2$ is parabola meeting x axis at the (0,0) and (4,0) as in the fig.

$$\therefore \text{ Required area} = \int_{x=1}^{x=3} y \cdot dx = \int_{1}^{3} (4x - x^2) dx$$
$$= \left[4 \frac{x^2}{2} - \frac{x^3}{3} \right]_{1}^{3}$$
$$= 2 \left(3^2 - 1^2 \right) - \frac{1}{3} \left(3^3 - 1^3 \right)$$
$$= 2 (9 - 1) - \frac{1}{3} (27 - 1)$$
$$\therefore \text{ Area} = 16 - \frac{26}{3}$$
$$= \frac{22}{3} \text{ sq.units.}$$

Ex.5: Find the area enclosed by curve $y = 4 - x^2$ and the lines x = 0, x = 2, y = 0Soln.: Given curve is the parabola with vertex here (0,4) meeting x axis at (2,0)(-2,0) as in the

fig.

Ex.6: Find the area under the curve $y = \sin x$ from x = 0 to x = 2f

Soln.: Fig shows the graph $y = \sin x$ The are from 0 to f lies in the 1st quadrant and area from f to 2f is below the axis and it is in the IV^{th} quadrant.

$$A = 2 \int_{0}^{f} y dx = 2 \int_{0}^{f} \sin x dx$$
$$= [-2\cos x]_{0}^{f} \qquad \dots As \int_{a}^{b} \sin x dx = [-\cos]_{a}^{b}$$

Ex.7: Find the area bounded by curve $y = 1 + x^3 + 2\sin x$, the x-axis and ordinates x = 0, x = f Soln.:

$$\therefore \text{ Required area} = \int_{x=0}^{x=f} y dx = \int_{x=0}^{x=f} (1+x^3+2\sin x) dx$$
$$= \int_{0}^{f} dx + \int_{0}^{f} x^3 dx + 2\int_{0}^{f} \sin x dx$$

Ex.8: Find the area between the parabola $y = 4x - x^2$ and the x-axis Soln.: The equation is $y = 4x - x^2$ When y = 0 x = 0When y = 0 $4x - x^2 = 0$ x(4-x) = 0 $\therefore x = 0$ or x = 4 $A = \int_{0}^{4} y dx = \int_{0}^{4} (4x - x^2) dx$

Ex.9: Find the area enclosed by curve $y = 4 - x^2$ and the x-axis Soln.: The equation of curve is $y = 4x - x^2$ When y = 0

$$0 = 4 - x^{2}$$

$$\therefore \quad x^{2} = 4$$

$$\therefore \quad x = +2$$

 \therefore The point of inter –section of parabola with x-axis is (-2,0) and (2,0)

:. A =
$$\int_{-2}^{2} y dx = \int_{-2}^{2} (4 - x^2) dx$$

As $f(x) = 4 - x^2$ is an even function

$$= 2\int_{0}^{2} (4-x^{2}) dx \qquad \qquad \dots \qquad \left[\int_{-a}^{a} f(x) dx = 2\int_{0}^{a} f(x) dx \right]$$

Page 7 of 40

By Dube M.G.

Ex.10: Find the area enclosed between the curve $y = 3x - 2 - x^2$ and the x-axis Soln.: Given equation of curve

Ex.11: Find the area of the loop of the curve $y^2 = x^2(1-x)$ Soln.:

Given equation of curve is $y^2 = x^2(1-x)$ Putting y = 0 in above equation of the curve

$$\therefore \quad 0 = x^2 (1 - x)$$

$$\therefore \quad x^2 = 0 \quad \text{or} \ (1 - x) = 0$$

$$\therefore \quad x = 0 \quad \text{or} \ x = 1$$

 \therefore Points where the loop cuts x-axis (0,0) and (1,0)

$$\therefore A = \int_{0}^{1} y dx = \int_{0}^{1} x \sqrt{1 - x} dx$$

$$\therefore y^{2} = x^{2} (1 - x) \text{ taking square root on both}$$

$$f = x^{2}(1-x) \text{ taking square root on both sides } y = x\sqrt{1-x}dx$$

= $\int_{0}^{1} (1-x)\sqrt{1-(1-x)}dx$... $\left[\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx\right]$
= $\int_{0}^{1} (1-x)\sqrt{1-1+x}dx$
= $\int_{0}^{1} (1-x)\sqrt{1-1+x}dx$

Ex.12: Find the area of the circle $x^2 + y^2 = 25$ using integration. Soln.: Given circle $x^2 + y^2 = 25$, is with centre (0,0) and radius 5. $y^2 = 25 - x^2$ Now taking square root on both sides $y = \sqrt{25 - x^2}$

 \therefore Required area = 4 x area in 1st quadrant

:. Required area =
$$4 \int_{x=0}^{x=5} y dx = 4 \int_{1}^{5} \sqrt{25 - x^2} dx$$

= $4 \int_{1}^{5} \sqrt{5^2 - x^2} dx$

By using formula

$$\int_{c}^{d} \sqrt{a^{2} - x^{2}} dx = \left[\frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \left(\frac{x}{a} \right) \right]_{c}^{d}$$

$$= 4 \left[\frac{x}{2} \sqrt{5^{2} - x^{2}} + \frac{5^{2}}{2} \sin^{-1} \left(\frac{x}{5} \right) \right]_{0}^{5} \dots (\because a = 5)$$

$$= 4 \left[\frac{5}{2} \sqrt{5^{2} - 5^{2}} + \frac{5^{2}}{2} \sin^{-1} \left(\frac{5}{5} \right) - \left(\frac{0}{2} \sqrt{5^{2} - 0^{2}} + \frac{5^{2}}{2} \sin^{-1} \left(\frac{0}{5} \right) \right) \right]$$

$$= 4 \left[0 + \frac{25}{2} \sin^{-1} (1) - 0 \right] = 4 \left[\frac{25}{2} \cdot \frac{f}{2} \right] \dots \sin^{-1} (1) = \frac{f}{2}$$

$$= 25 f \text{ sq.units}$$

Ex.13: Find the area of the circle $x^2 + y^2 = 16$ using integration.

Soln.: Given circle $x^2 + y^2 = 16$, is with centre (0,0) and radius 5.

 $y^2 = 16 - x^2$

Now taking square root on both sides

$$y = \sqrt{16 - x^2}$$

 \therefore Required area = 4 x area in 1st quadrant

:. Required area =
$$4 \int_{x=0}^{x=4} y dx = 4 \int_{1}^{4} \sqrt{16 - x^2} dx$$

= $4 \int_{1}^{4} \sqrt{4^2 - x^2} dx$

By using formula

$$\int_{c}^{d} \sqrt{a^{2} - x^{2}} dx = \left[\frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-2} \left(\frac{x}{a} \right) \right]_{c}^{d}$$

Ex.14: Find the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by using integration method. Soln.: Given curve is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, curve is symmetrical abount both the axis.

$$\therefore \text{ Required Area} = 4 \int_{0}^{\infty} y dx$$
Here $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Now $\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2}$

$$\therefore \qquad y^2 = b^2 \left[1 - \frac{x^2}{a^2} \right]$$

$$\therefore \qquad y = b \sqrt{1 - \frac{x^2}{a^2}}$$

$$\therefore \text{ Area} = 4 \int_{0}^{a} b \sqrt{\frac{a^2 - x^2}{a^2}}$$

Home work

Ex.15: Find the area of ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ by using integration method.

2.Area between Two curves

Let y = p(x) and y = q(x) be the two curvea. As shown in fig. The area between two curves y = p(x) and y = q(x) is given as,

$$A = \int_{a}^{b} p(x)dx - \int_{a}^{b} q(x)dx = A_1 - A_2$$
$$= \int_{a}^{b} [p(x) - q(x)]dx$$

Ex.16: Find the area between $y = x^2$ and the line y = xSoln.: The given curve $y = x^2$, is parabola opeing upward with vertex at origin (0,0).

The line y = x is passing through origin having slope =1

Two curves intersect

$$y = x^{2} \text{ and } y = x$$
Now, put $y = x^{2}$ in $y = x$

$$\Rightarrow \qquad x^{2} = x \Rightarrow x^{2} - x = 0$$

$$\Rightarrow \qquad x(x-1) = 0 \qquad \Rightarrow \qquad x = 0, x = 1$$

$$\therefore \qquad y = 0, y = 1$$

 \therefore Curves intersect at the origin and the point (1,1)

Required area =
$$A_1 - A_2 = \int_0^1 y_1 dx - \int_0^1 y_2 dx = \int_0^1 x dx - \int_0^1 x^2 dx$$

= $\left(\frac{x^2}{2}\right)_0^1 - \left(\frac{x^3}{3}\right)_0^1$
= $\frac{1}{2} - \frac{1}{3}$
= $\frac{1}{6}$ sq.units.

Ex.17: Find the area enclosed by $y^2 = 8x$ and the line x = 2Soln.: The required area is bounded by parabola $y^2 = 8x$ and the line x = 2(Parallel to y-axis) as shown in fig.

Line x = 2 intersect parabola $y^2 = 8x$ (Symmetric about x-axis)

To find the points of intersection put x = 2 in $y^2 = 8x$

$$\therefore y^2 = 16 \Rightarrow y = \pm 4$$

$$\therefore Points of intersection are (2,4) (2,-4)$$

$$\therefore Required area = 2 x area above x-axis$$

$$= 2\int_{x=0}^{x=2} y dx = 2\int_{0}^{2} \sqrt{8x} dx = 2\sqrt{8}\int_{0}^{2} x^{1/2}$$
$$= 2\sqrt{8} \left[\frac{x^{3/2}}{3/2} \right] = 2 \cdot \frac{2}{3} \sqrt{8} \left[2^{3/2} - 0 \right]$$
$$= \frac{4}{3} \sqrt{8} \left(2^3 \right)^{1/2} = \frac{4}{3} \sqrt{8} \cdot \sqrt{8}$$
$$= \frac{4}{3} \sqrt{64} = \frac{4}{3} \times 8$$
$$= \frac{32}{3} \text{ sq.units}$$

Ex.18: Find the area bounded by the curve $y^2 = 4x$ and $x^2 = 4y$ Soln.: The required area is area enclosed between the two parabolas

$$y^{2} = 4x \text{ and } x^{2} = 4y \text{ both intersecting at the points } (0,0) (4,4)$$
Now $y^{2} = 4x$
Squaring both the sides
$$\therefore \qquad y^{4} = 4^{2} \cdot x^{2}$$

$$y^{4} = 4^{2} \cdot 4y \qquad \dots (\because x^{2} = 4y)$$

$$y^{4} = 4^{3} y \qquad \dots (\because x^{2} = 4y)$$

$$y^{4} - 4^{3} y = 0$$

$$y(y^{3} - 4^{3}) = 0$$

$$\therefore \qquad y = 0, y = 4 \text{ for } y = 4, y^{2} = 4x$$

$$\therefore \qquad 4x = 4^{2}$$

$$\therefore \qquad x = 4$$
fore required area $A = A_{1} = A_{2}$

Therefore required area $A = A_1 - A_2$ Where A_1 = area bounded by $y^2 = 4x$ and ordinate x = 4

$$A_2 = \text{area bounded by } x^2 = 4y \text{ and ordinate } x = 4$$

$$\therefore \quad \text{Required area} = \int_{x=0}^{x=4} y \cdot dx - \int_{x=0}^{x=4} y \cdot dx = \int_{x=0}^{x=4} \sqrt{4} \cdot x^{1/2} dx - \int_{x=0}^{x=4} \frac{x^2}{4} dx$$

Home work

Ex.19: Find the area enclosed by the two parabolas $y^2 = x$ and $x^2 = y$

Ex.20: Find the area bounded between two parabolas $y^2 = 9x$ and $x^2 = 9y$ Soln.: The required area is the area enclosed between the two parabolas

Ex.20: Find the area between the parabolas $y = x^2 + 3$ and line y = x + 3Soln.: The required area is the area enclosed between the two parabolas Given equation of curve First we will find the ordinates of x and y as follows -2 -1 0 1 2 Х 4 7 3 4 7 у By using these ordinates plot the curve as shown in fig. To find points of intersection of the curves $y = x^2 + 3$ And y = x + 3y = x + 3 in $y = x^2 + 3$ Putting $x + 3 = x^2 + 3$ ÷. $x^2 - x = 0$ $\dots x(x-1) = 0$ *.*.. x = 0 or x = 1*.*.. x = 0, y = 0 + 3 = 3When \therefore one point of intersection is (0,3) When x = 1, y = 1 + 3 = 4 \therefore other point of intersection is (1,4) Required area = $\int_{-\infty}^{1} \left[(x+3) - (x^2+3) \right] dx$ ÷ $= \int_{0}^{1} (x+3)dx - \int_{0}^{1} (x^{2}+3)dx$ $= \int_{0}^{1} x dx + \int_{0}^{1} 3 dx - \left[\int_{0}^{1} x^{2} dx + \int_{0}^{1} 3 dx \right]$ $= \left[\frac{x^2}{2}\right]_0^1 + 3[x]_0^1 - \left[\frac{x^3}{3}\right]_0^1 - 3[x]_0^1$ $=\frac{1}{2}\left[1^{2}-0\right]+3\left[1-0\right]-\frac{1}{3}\left[1^{3}-0\right]-3\left[1-0\right]$ $=\frac{1}{2}+3-\frac{1}{2}-3$ $=\frac{1}{2}-\frac{1}{3}=\frac{3-2}{6}=\frac{1}{6}$

Page 20 of 40

Home work Ex.21: Find the area of the bounded by the curve $y^2 = 2x$ and y = 4x - 1

3.Mean and RMS values.

With the help of Definite Integral Average or Mean value of the function y = f(x) can be calculated. Therefore If y = f(x) is integrable over the interval $a \le x \le b$ or [a,b], then the mean value of the function y = f(x) over [a,b] is given by the formula,

$$\overline{Y}$$
 or Y_{mean} or $Y_{avg} = \frac{1}{b-a} \int_{a}^{b} y dx = \frac{1}{b-a} \int_{a}^{b} f(x) dx$

Note:-

- 1. Trignometric functions 'sinx' and ' $\cos x$ ' are periodic with period 2f.
- 2. The period of 'sinpx' and 'cospx' is $T = \frac{2f}{R}$.
- 3. Therefore for period T of Function y = f(x),

$$\overline{Y}$$
 or Y_{mean} or $Y_{avg} = \frac{1}{T} \int_{a}^{b} y dx = \frac{1}{T} \int_{a}^{b} f(x) dx$

Examples1: Find the mean value of the function $y = 4 - x^2$ over [0,2]. Solution:

Given: $y = 4 - x^2$ over [0,2] \therefore a=0, b=2 The mean value of the function y = f(x) over [a,b] is given by,

$$Y_{mean} = \frac{1}{b-a} \int_{a}^{b} y dx$$
$$= \frac{1}{2-0} \int_{0}^{2} 4 - x^{2} dx$$

Page 22 of 40

By Dube M.G.

$$= \frac{1}{2} \begin{bmatrix} 4 \int_{0}^{2} dx - \int_{0}^{2} x^{2} dx \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 4 \int_{0}^{2} dx - \int_{0}^{2} x^{2} dx \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 4 x_{0}^{2} - \frac{x^{3}}{3} \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 8 - \frac{8}{3} \end{bmatrix}$$
$$= \frac{8}{3}.$$

Examples2: Find the mean value of the function $y = x \cdot \sqrt{x^2 + 3}$ in the range over $0 \le x \le 1$. Solution:

Here: $y = f(x) = x \cdot \sqrt{x^2 + 3}$, a=0, b=1 The mean value of the function y = f(x) over the range $0 \le x \le 1$ is given by,

$$Y_{mean} = \frac{1}{b-a} \int_{a}^{b} y dx$$
$$= \frac{1}{1-0} \int_{0}^{1} x \cdot \sqrt{x^{2}+3} dx$$
$$= \int_{0}^{1} x \cdot \sqrt{x^{2}+3} dx$$

The integral is evaluated by the method of substitution.

Taking
$$x^2 + 3 = t$$
 $\therefore 2xdx = dt$ or $x \cdot dx = \frac{dt}{2}$
When $x = 0$, $t = 0 + 3 = 3$
When $x = 1$, $t = 1 + 3 = 4$
Then, the above integral (1) becomes,

$$Y_{mean} = \frac{1}{b-a} \int_{3}^{4} \sqrt{t} \cdot \frac{dt}{2}$$

Examples3: Find the mean value of the function $y = x^2 - 4x + 3$ between the points where it cut x-axis. Solution:

The Curve $y = x^2 - 4x + 3$ cuts the x-axis in the points where y = 0 .putting y = 0in $y = x^2 - 4x + 3$ we get, $\therefore x^2 - 4x + 3 = 0$ Factorizing, we have, (x - 3)(x - 1) = 0 $\therefore x = 3$ or x = 1.

 \therefore Two points on x-axis are: (1,0) and (3,0).

The mean value of y = f(x) over the range $1 \le x \le 3$ is: Then, the above integral (1) becomes,

$$Y_{mean} = \frac{1}{b-a} \int_{a}^{b} y dx$$

= $\frac{1}{3-1} \int_{1}^{3} (x^2 - 4x + 3) dx$
= $\frac{1}{2} \left[\int_{1}^{3} x^2 dx - 4 \int_{1}^{3} x dx + 3 \int_{1}^{3} dx \right]$

Examples4: Find the mean value of the $I = 10 \sin 100 ft$ over a complete period. Solution:

Given the function as $I = 10 \sin 100 f t$ Comparing with sin *pt*, we have p = 100 f

 \therefore Period of the function, $T = \frac{2f}{P} = \frac{2f}{100f} = \frac{1}{50}$

Then, the mean value of the function y = f(x) having period T is given by,

$$Y_{mean} = \frac{1}{T} \int_{0}^{T} I.dt$$
$$= \frac{1}{\frac{1}{50}} \int_{0}^{1/50} 10.\sin(100ft).dt$$

Remark – The mean value of trigonometric functions over a complete period is zero.

Homework.

Examples5: An alternating current is given by $i = 20 \sin 100t$. Find the mean value of ' i^2 ' over a complete period.

Examples6: The instantaneous value of an alternating current in amperes is given by $i = 20\sin \check{S}t + \sin 3\check{S}t$. Find the mean value of the current over the range i = 0 to $i = \frac{f}{\check{S}}$.

ROOT MEAN SQUARE (R.M.S.) VALUE:

The R.M.S. value of the function y = f(x) over [a,b] is given by the formula,

$$Y_{r.m.s.} = \sqrt{\frac{1}{b-a}} \int_{a}^{b} y^2 dx$$

Note:-

- 1) The R.M.S. value is also called the **effective value.** Therefore $Y_{r.m.s.} = Y_{eff}$
- 2) The R.M.S. value is generally applied only to periodic functions.
- 3) The R.M.S. value of any sinusoidal waveform taken over an interval equal to one period is $\frac{1}{\sqrt{2}}$ times amplitude of the waveform.
- 4) Mean values and R.M.S. values are very Useful in calculating current, e.m.f.....etc.

Example1: Find the R.M.S. value of the function $f(x) = x^2$ over the interval $1 \le x \le 3$. Solution:

Given, $y = f(x) = x^2$ and interval $1 \le x \le 3$. \therefore a=1, b=3.

The R.M.S. value of the function y = f(x) over [a,b] is given by the formula,

$$Y_{r.m.s.} = \sqrt{\frac{1}{b-a} \int_{a}^{b} y^2 dx}$$
(1)

Where

$$I = \int_{1}^{3} y^{2} dx = \int_{1}^{3} (x^{2})^{2} dx$$

$$= \int_{1}^{3} x^{4} dx$$
$$= \left[\frac{x^{5}}{5}\right]_{1}^{3}$$
$$= \frac{242}{5}$$

Therefore, from (1) we have:

Page 27 of 40

$$Y_{r.m.s.} = \sqrt{\frac{1}{3-1} \cdot \frac{242}{5}} = 4.92$$

Example 2: Find the R.M.S. value of the function $f(t) = \sin wt + \cos wt$ over [0,1] Solution:

Given, $y = f(t) = \sin wt + \cos wt$ over [0,1] : a=0, b=1. Then, $Y_{r.m.s.} = \sqrt{\frac{1}{b-a} \int_{a}^{b} y^{2} dt}$ Where $I = \int_{a}^{b} y^{2} dt = \int_{0}^{1} (\sin wt + \cos wt)^{2} dt$ $= \int_{0}^{1} (\sin^{2} wt + 2\sin wt . \cos wt + \cos^{2} wt) dt$ Note that $\sin^{2} wt + \cos^{2} wt = 1$ and $2\sin wt . \cos wt = \sin(2wt)$ $\therefore \qquad I = \int_{0}^{1} (1 + \sin 2wt) dt$

Example 3: Find the R.M.S. value of the function $I = 3\sin 2t$ over a complete cycle. Solution:

Given : $I = 3\sin 2t$ over a complete cycle

$$\therefore$$
 Period of I is $T = \frac{2f}{R}$ where p=2

Comparing $\sin 2t$ with $\sin pt$.

$$\therefore T = \frac{2f}{2} = f$$

Examples4: Find R.M.S. value of an alternating current $i = 5 \sin 200 ft$. Solution:

Given $i = 5 \sin 200ft$ Comparing $\sin 200ft$ with $\sin ft$, $\sin 200ft$ \therefore Period of the function, $T = \frac{2f}{P} = \frac{2f}{200f} = \frac{1}{100}$ Then $i_{r.m.s.}^2 = \frac{1}{T} \int_0^T i^2 dt$

....Note that we are taking square of $i_{r.m.s.}$ to avoid root sign.

$$=\frac{1}{\frac{1}{100}}\int_{0}^{1/100} \{5\sin 200ft\}^2.dt$$

Examples5: An alternating current is given by $i = a \sin t$. Find the R.M.S value of the current over a half wave.

Solution:

Given $i = a \sin t$ over a half wave

- \therefore The range of the function is t = 0 to i = f (half of 2f)
- $\therefore a = 0$ to b = f

HW. **Examples6: Find R.M.S. value of the function** $y = a + b \cos x$ over the interval [0, f].

4.Volume of solid revolution:-

Consider y = f(x) be a continuous function defied on the interval [a,b]. Fig a. Then, the volume of the solid obtained by revolving the area under y = f(x) from x = a to x = b with x-axis abount x-axis is given by the formula

$$V = f \int_{a}^{b} y^{2} dx = f \int_{a}^{b} [f(x)]^{2} dx$$

Similarly, the volume of the solid generated by revolving the area bounded by the curve x = g(y), y-axis and lines y = c, y = d abount y-axis is given by the formula:

$$V = f \int_{y=c}^{y=d} x^2 . dy = f \int_{c}^{d} [g(y)]^2 . dy$$
 Refer Fig

Note:

Page 32 of 40

- 1. If a rectangle is revolved about one of its sides, we obtain a right circular cylinder as the solid of revolution.
- 2. If a right-angled triangle is revolved about one of its legs, we obtain a right circular cone as the solid of revolution.
- 3. If a semi-circle is revolved about its diameter, we obtain a sphere of the same radius as the solid of revolution.

Examples1: Find the volume of right circular cone generated by revolving the line $y = \frac{3}{4}x$

about x-axis between the ordinates x = 0 to x = 4Solution:

The problem is represented diagrammatically as shown in fig.

When the line $y = \frac{3}{4}x$ is revolved about x-axis between the ordinates x = 0 to x = 4, the volume of solid cone so generated is given by,

$$V = f \int_{0}^{4} y^{2} dx$$

= $f \int_{0}^{4} \left(\frac{3}{4}x\right)^{2} dx$
= $\frac{9f}{16} \int_{0}^{4} x^{2} dx = -\frac{9f}{16} \frac{x^{3}}{3}$

$$= \frac{3f}{16} \cdot \left[4^3 - 0 \right] = = \frac{3f}{16} \times 64$$
$$= 3f \times 4 = 12f \text{ cubic units.}$$

Examples2: Find the volume of solid obtained by revolving about x-axis the plane area

bounded by the curve $y = 2\sin 3x$, x-axis and ordinates x = 0 to $x = \frac{f}{3}$

Solution:

volume of solid of revolution is given by,

$$V = f \int_{a}^{b} y^{2} dx$$
$$= f \int_{0}^{f/3} (2\sin 3x)^{2} dx$$

Examples3: Find the volume generated by revolving semi-circle abount its bounding diameter OR Find the volime of a sphere of radius r using integration. Solution: Consider a circle with centre at origin, that is, O(0.0) and radius r, as shown in fig.

The equation of circle with centre at origin and radius r, is

 $x^2 + y^2 = r^2$, $y^2 = r^2 - x^3$

The area of the semi-circle bounded by its diameter, that is, the area under y = f(x) from x = -r to x = r with x-axis is when revolved about x-axis, a solid so obtained is a sphere of the same radius (*i.e.r*). Its volume is given by,

$$V = f \int_{-r}^{r} y^{2} dx$$

= $f \int_{-r}^{r} (r^{2} - x^{2}) dx$ From (1), $y^{2} = r^{2} - x^{3}$
= $2f \int_{0}^{r} (r^{2} - x^{2}) dx$ $\because f(x) = r^{2} - x^{2}$ is even
By property of definite integral $\int_{-a}^{a} \dots dx = 2\int_{0}^{a} \dots dx$
= $2f \left[r^{2} \int_{0}^{r} dx - \int_{0}^{r} x^{2} dx \right]$
= $2f \left[r^{2} .x \int_{0}^{r} |-\frac{x^{3}}{3}|_{0}^{r} \right]$
= $2f \left[r^{2} .(r - 0) - \frac{1}{3} (r^{3} - 0) \right]$
= $2f \left[r^{3} - \frac{r^{3}}{3} \right] = 2f \left[\frac{3r^{3} - r^{3}}{3} \right] = 2f .\frac{2r^{3}}{3}$

Page 35 of 40

By Dube M.G.

$$=\frac{4}{3}fr^3$$
Cubic units.

Examples 4: Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$

about the x-axis. Solution:

The equation of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ Re-writing for y^2 , we get $\frac{y^2}{4} = 1 - \frac{x^2}{9} = \frac{9 - x^2}{9} = 1$

Examples5: Find the volume obtained by revolving the area under the curve $9x^2 - 4y^2 = 36$ in the interval from x = 2 to x = 4 about x-axis. Solution:

The equation of the curve is $9x^2 - 4y^2 = 36$ (which is a hyperbola)

$$9x^2 - 4y^2 = 36$$
 or $y^2 = \frac{9}{4}(x^2 - 4)$

Examples6: Find the formula for the volume of a right circular cone of height 'h' and base radius 'r' by using integration. Solution: In fig.

Page **37** of **40**

For two similar triangles their corresponding sides are in production.

$$\therefore \frac{y}{x} = \frac{r}{h}$$
$$\therefore y = \frac{r}{h} \cdot x$$

Now, the volume of right circular cone is given by

$$V = f \int_{0}^{h} y^2 dx$$

Examples7: Find the volume of the solid obtained by revoliving the region bounded by the curve y = x and $y = x^2$ about x-axis. Solution:

The point of intersection of the curves y = x and $y = x^2$ are obtained equating (for y)them.

 $\therefore x = x^2$ $\therefore x^2 - x = 0$ $\therefore x(x-1) = 0$ $\therefore x = 0$ or x = 1When x = 0 or y = 0 \therefore one point of intersection is (0,0)When x = 1 or y = 1 \therefore one point of intersection is (1,1)

The area of revolution to get solid is as shown in fig.

Where
$$y_1 = x$$
 \therefore $y_1^2 = x^2$
 $y_2 = x^2$ \therefore $y_2^2 = x^4$

The required volume of the solid obtained by revolving the shaded area is given by,

$$V = f \int_{0}^{1} \left(y_1^2 - y_2^2 \right) dx$$

Examples8: The loop of the curve $y^2 = x(x-1)^2$ is rotated about the x-axis. Find the volume of the solid so generated. Solution:

The graph of the curve $y^2 = x(x-1)^2$ is as shown in the fig.

The graph intersects x-axis in the point where y = 0

$$\therefore 0 = x(x-1)^2 \quad \therefore x = 0 \text{ or } x = 1$$

Point of intersection are (0,0) and (1,0)

The required volume of the solid generated by revolving the shaded area about x-axis is given by,

$$V = f \int_{0}^{1} y^{2} dx$$

= $f \int_{0}^{1} x(x-1)^{2} dx$