Application Of Definite Integrals:-

1. Area under the Curve:

Consider the curve $y=f(x)$, then the area under the curve $y=f(x)$ and the ordinate $x=a$ and $x=b$ and the x axis is given by
$A=\int_{x=a}^{x=b} y d x$
OR
$A=\int_{x=a}^{x=b} f(x) d x$.

The area under the curve $x=g(y)$,the ordinate $y=c$ and $y=d$ and x axis is
$A=\int_{y=d}^{y=c} x d y$
OR
$A=\int_{y=d}^{y=c} g(y) d y$

Ex. 1 Obtain the area between line $y=8 x, \mathrm{x}$ axis and ordinates at $x=2$ and $x=6$ Soln.:
Area bounded $=\int_{x=2}^{x=6} y d x=\int_{x=2}^{x=6} 8 x d x$

$$
=8\left[\frac{x^{2}}{2}\right]_{2}^{6}
$$

$$
\ldots \int_{a}^{b} x^{n} d x=\left[\frac{x^{n+1}}{n+1}\right]_{a}^{b}
$$

$$
=4\left[x^{2}\right]_{2}^{6}
$$

$$
=4\left[6^{2}-2^{2}\right]
$$

$$
=4[36-4]
$$

Marathwada Mitra Mandal's Polytechnic.

$$
\begin{aligned}
& =4[32] \\
& =128 \text { Sq.units }
\end{aligned}
$$

Ex.2: Find the area bounded by the curve $y=x^{3}, \mathrm{x}$ axis and the coordinate. $x=1, x=3$
Soln.: The area bounded by the curve $y=x^{3}, \mathrm{x}$ axis and the coordinate. $x=1, x=3$
\therefore The required area $A=\int_{1}^{3} y \cdot d x$

$$
\begin{aligned}
& =\int_{1}^{3} x^{3} \cdot d x=\left[\frac{x^{3+1}}{3+1}\right]_{1}^{3}=\left[\frac{x^{4}}{4}\right]_{1}^{3} \\
& =\frac{1}{4}\left[x^{4}\right]_{1}^{3}=\frac{1}{4}\left[3^{4}-1^{4}\right] \\
& =\frac{1}{4}[81-1]=\frac{1}{4}[80]=20 u n i t^{2}
\end{aligned}
$$

Marathwada Mitra Mandal's Polytechnic.

Ex.3: Find the area of the region bounded by the curve $y=4 x^{2}, \mathrm{x}$ axis and the lines. $x=1$ and $x=2$.
Soln.: The required area is as shown in Fig.
\therefore Required area $A=\int_{1}^{2} y \cdot d x=\int_{1}^{2} 4 x^{2} \cdot d x$
$=4 \int_{1}^{2} x^{2} \cdot d x=4\left[\frac{x^{3}}{3}\right]_{1}^{2}$
$=\frac{4}{3}\left[(2)^{3}-(1)^{3}\right]$
$=\frac{4}{3}(8-1)=\frac{4}{3}(7)$
$=\frac{28}{3}$ square units.

Marathwada Mitra Mandal's Polytechnic.

Ex.4: Find the area bounded by $y=4 x-x^{2}$, meeting the x axis and the ordinates $x=1, x=3$.
Soln.: here given curve $y=4 x-x^{2}$ is parabola meeting x axis at the $(0,0)$ and $(4,0)$ as in the fig.

$$
\begin{aligned}
\therefore \text { Required area }=\int_{x=1}^{x=3} y . d x & =\int_{1}^{3}\left(4 x-x^{2}\right) d x \\
& =\left[4 \frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{1}^{3} \\
& =2\left(3^{2}-1^{2}\right)-\frac{1}{3}\left(3^{3}-1^{3}\right) \\
& =2(9-1)-\frac{1}{3}(27-1) \\
\therefore \text { Area } & =16-\frac{26}{3} \\
& =\frac{22}{3} \text { sq.units. }
\end{aligned}
$$

Marathwada Mitra Mandal's Polytechnic.

Ex.5: Find the area enclosed by curve $y=4-x^{2}$ and the lines $x=0, x=2, y=0$
Soln.: Given curve is the parabola with vertex here $(0,4)$ meeting x axis at $(2,0)(-2,0)$ as in the

fig.

$$
\begin{aligned}
\therefore \text { Required area }=\int_{x=0}^{x=2} y \cdot d x & =\int_{1}^{2}\left(4-x^{2}\right) d x \\
& =\left[4 x-\frac{x^{3}}{3}\right]_{0}^{2} \\
& =4(2-0)-\frac{1}{3}\left(2^{3}-0\right) \\
& =8-\frac{8}{3} \\
& =\frac{16}{3} \text { sq.units. }
\end{aligned}
$$

Ex.6: Find the area under the curve $y=\sin x$ from $x=0$ to $x=2 \pi$

Soln.: Fig shows the graph $y=\sin x$
The are from 0 to π lies in the $1^{\text {st }}$ quadrant and area from π to 2π is below the axis and it is in the $I V^{\text {th }}$ quadrant.

$$
\begin{aligned}
\mathrm{A}=2 \int_{0}^{\pi} y \cdot d x & =2 \int_{0}^{\pi} \sin x \cdot d x \\
& =[-2 \cos x]_{0}^{\pi}
\end{aligned}
$$

$$
\ldots . \mathrm{As} \int_{a}^{b} \sin x . d x=[-\cos]_{a}^{b}
$$

Ex.7: Find the area bounded by curve $y=1+x^{3}+2 \sin x$, the x -axis and ordinates $x=0, x=\pi$ Soln.:
\therefore Required area $=\int_{x=0}^{x=\pi} y \cdot d x=\int_{x=0}^{x=\pi}\left(1+x^{3}+2 \sin x\right) d x$

$$
=\int_{0}^{\pi} d x+\int_{0}^{\pi} x^{3} d x+2 \int_{0}^{\pi} \sin x d x
$$

Ex.8: Find the area between the parabola $y=4 x-x^{2}$ and the x -axis
Soln.: The equation is $y=4 x-x^{2}$

$$
\text { When } y=0 x=0
$$

$$
\text { When } y=04 x-x^{2}=0
$$

$$
x(4-x)=0
$$

$$
\therefore \quad x=0 \text { or } x=4
$$

$$
\mathrm{A}=\int_{0}^{4} y \cdot d x=\int_{0}^{4}\left(4 x-x^{2}\right) d x
$$

Ex.9: Find the area enclosed by curve $y=4-x^{2}$ and the x-axis
Soln.: The equation of curve is $y=4 x-x^{2}$

$$
\text { When } y=0
$$

$$
0=4-x^{2}
$$

$$
\therefore \quad x^{2}=4
$$

$$
\therefore \quad x= \pm 2
$$

\therefore The point of inter -section of parabola with x -axis is $(-2,0)$ and $(2,0)$

$$
\therefore \mathrm{A}=\int_{-2}^{2} y \cdot d x=\int_{-2}^{2}\left(4-x^{2}\right) d x
$$

As $f(x)=4-x^{2}$ is an even function

$$
==2 \int_{0}^{2}\left(4-x^{2}\right) d x
$$

$$
\ldots\left[\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x\right]
$$

Ex.10: Find the area enclosed between the curve $y=3 x-2-x^{2}$ and the x -axis Soln.: Given equation of curve

$$
y=3 x-2-x^{2}
$$

x	0	1	2	3
y	-2	0	0	-2

$$
\begin{aligned}
\text { Area } \begin{aligned}
=\int y d x & =\int_{1}^{2}\left(3 x-2-x^{2}\right) d x \\
& =\left(3 \frac{x^{2}}{2}-2 x-\frac{x^{3}}{3}\right)_{1}^{2} \\
& =\left[\frac{3}{2}(2)^{2}-2(2)-\frac{(2)^{3}}{3}\right]-\left[\frac{3}{2}(1)^{2}-2(1)-\frac{(1)^{3}}{3}\right] \\
& =\frac{3}{2} \times 4-4-\frac{8}{3}-\frac{3}{2}+2+\frac{1}{3}
\end{aligned},=\text {. }
\end{aligned}
$$

Marathwada Mitra Mandal's Polytechnic.

Ex.11: Find the area of the loop of the curve $y^{2}=x^{2}(1-x)$
Soln.:
Given equation of curve is $y^{2}=x^{2}(1-x)$
Putting $y=0$ in above equation of the curve

$$
\begin{aligned}
& \therefore 0=x^{2}(1-x) \\
& \therefore \quad x^{2}=0 \quad \text { or }(1-x)=0 \\
& \therefore \quad x=0 \quad \text { or } x=1
\end{aligned}
$$

\therefore Points where the loop cuts x -axis $(0,0)$ and $(1,0)$

$$
\therefore \mathrm{A}=\int_{0}^{1} y \cdot d x=\int_{0}^{1} x \sqrt{1-x} d x
$$

$\because y^{2}=x^{2}(1-x)$ taking square root on both sides $y=x \sqrt{1-x} d x$

$$
\begin{aligned}
& =\int_{0}^{1}(1-x) \sqrt{1-(1-x)} d x \quad \ldots\left[\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right] \\
& =\int_{0}^{1}(1-x) \sqrt{1-1+x} d x \\
& =\int_{0}^{1}(1-x) \sqrt{1-1+x} d x
\end{aligned}
$$

Ex.12: Find the area of the circle $x^{2}+y^{2}=25$ using integration.
Soln.: Given circle $x^{2}+y^{2}=25$, is with centre $(0,0)$ and radius 5 .

$$
y^{2}=25-x^{2}
$$

Now taking square root on both sides

$$
\begin{aligned}
y & =\sqrt{25-x^{2}} \\
\therefore \text { Required area } & =4 \mathrm{x} \text { area in } 1^{\text {st }} \text { quadrant }
\end{aligned}
$$

Marathwada Mitra Mandal's Polytechnic.

$$
\begin{aligned}
\therefore \text { Required area } & =4 \int_{x=0}^{x=5} y \cdot d x=4 \int_{1}^{5} \sqrt{25-x^{2}} d x \\
& =4 \int_{1}^{5} \sqrt{5^{2}-x^{2}} d x
\end{aligned}
$$

By using formula

$$
\begin{aligned}
\int_{c}^{d} \sqrt{a^{2}-x^{2}} d x & =\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]_{c}^{d} \\
& =4\left[\frac{x}{2} \sqrt{5^{2}-x^{2}}+\frac{5^{2}}{2} \sin ^{-1}\left(\frac{x}{5}\right)\right]_{0}^{5} \quad \ldots . .(\because a=5) \\
& =4\left[\frac{5}{2} \sqrt{5^{2}-5^{2}}+\frac{5^{2}}{2} \sin ^{-1}\left(\frac{5}{5}\right)-\left(\frac{0}{2} \sqrt{5^{2}-0^{2}}+\frac{5^{2}}{2} \sin ^{-1}\left(\frac{0}{5}\right)\right)\right] \\
& =4\left[0+\frac{25}{2} \sin ^{-1}(1)-0\right]=4\left[\frac{25}{2} \cdot \frac{\pi}{2}\right] \quad \ldots . \sin ^{-1}(1)=\frac{\pi}{2} \\
& =25 \pi \text { sq.units }
\end{aligned}
$$

Ex.13: Find the area of the circle $x^{2}+y^{2}=16$ using integration.

Soln.: Given circle $x^{2}+y^{2}=16$, is with centre $(0,0)$ and radius 5 .

$$
y^{2}=16-x^{2}
$$

Now taking square root on both sides

$$
y=\sqrt{16-x^{2}}
$$

\therefore Required area $=4 \mathrm{x}$ area in $1^{\text {st }}$ quadrant

$$
\begin{aligned}
\therefore \text { Required area } & =4 \int_{x=0}^{x=4} y \cdot d x=4 \int_{1}^{4} \sqrt{16-x^{2}} d x \\
& =4 \int_{1}^{4} \sqrt{4^{2}-x^{2}} d x
\end{aligned}
$$

By using formula

$$
\int_{c}^{d} \sqrt{a^{2}-x^{2}} d x=\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-2}\left(\frac{x}{a}\right)\right]_{c}^{d}
$$

Marathwada Mitra Mandal's Polytechnic.

Ex.14: Find the area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by using integration method.
Soln.: Given curve is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, curve is symmemical abount both the axis.

$$
\therefore \text { Required Area }=4 \int_{0}^{a} y d x
$$

Here $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
\begin{aligned}
& \\
& \therefore \quad \text { Now } \frac{y^{2}}{b^{2}}=1-\frac{x^{2}}{a^{2}} \\
& \therefore \quad y^{2}=b^{2}\left[1-\frac{x^{2}}{a^{2}}\right] \\
& \therefore \quad y=b \sqrt{1-\frac{x^{2}}{a^{2}}} \\
& \therefore \quad \text { Area } \quad=4 \int_{0}^{a} b \sqrt{\frac{a^{2}-x^{2}}{a^{2}}}
\end{aligned}
$$

Marathwada Mitra Mandal's Polytechnic.

Home work
Ex.15: Find the area of ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ by using integration method.

2.Area between Two curves

Let $y=p(x)$ and $y=q(x)$ be the two curvea. As shown in fig.
The area between two curves $y=p(x)$ and $y=q(x)$ is given as,

$$
\begin{aligned}
\mathrm{A} & =\int_{a}^{b} p(x) d x-\int_{a}^{b} q(x) d x=A_{1}-A_{2} \\
& =\int_{a}^{b}[p(x)-q(x)] d x
\end{aligned}
$$

Ex.16: Find the area between $y=x^{2}$ and the line $y=x$
Soln.: The given curve $y=x^{2}$, is parabola opeing upward with vertex at origin $(0,0)$.
The line $y=x$ is passing through origin having slope $=1$
Two curves intersect

$$
y=x^{2} \text { and } y=x
$$

Now, put $y=x^{2}$ in $y=x$

$$
\begin{array}{lc}
\Rightarrow & x^{2}=x \Rightarrow x^{2}-x=0 \\
\Rightarrow & x(x-1)=0 \Rightarrow x=0, x=1 \\
\therefore & y=0, y=1
\end{array}
$$

Marathwada Mitra Mandal's Polytechnic.

$\therefore \quad$ Curves intersect at the origin and the point $(1,1)$
Required area $=A_{1}-A_{2}=\int_{0}^{1} y_{1} d x-\int_{0}^{1} y_{2} d x=\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x$

$$
\begin{aligned}
& =\left(\frac{x^{2}}{2}\right)_{0}^{1}-\left(\frac{x^{3}}{3}\right)_{0}^{1} \\
& =\frac{1}{2}-\frac{1}{3} \\
& =\frac{1}{6} \text { sq.units. }
\end{aligned}
$$

Ex.17: Find the area enclosed by $y^{2}=8 x$ and the line $x=2$
Soln.: The required area is bounded by parabola $y^{2}=8 x$ and the line $x=2$
(Parallel to y-axis) as shown in fig.
Line $x=2$ intersect parabola $y^{2}=8 x$ (Symmetric about x -axis)
To find the points of intersection put $x=2$ in $y^{2}=8 x$

$$
\therefore \quad y^{2}=16 \Rightarrow y= \pm 4
$$

$\therefore \quad$ Points of intersection are $(2,4)(2,-4)$
$\therefore \quad$ Required area $=2 \mathrm{x}$ area above x -axis

$$
\begin{aligned}
& =2 \int_{x=0}^{x=2} y \cdot d x=2 \int_{0}^{2} \sqrt{8 x} d x=2 \sqrt{8} \int_{0}^{2} x^{1 / 2} \\
& =2 \sqrt{8}\left[\frac{x^{3 / 2}}{3 / 2}\right]=2 \cdot \frac{2}{3} \sqrt{8}\left[2^{3 / 2}-0\right] \\
& =\frac{4}{3} \sqrt{8}\left(2^{3}\right)^{1 / 2}=\frac{4}{3} \sqrt{8} \cdot \sqrt{8} \\
& =\frac{4}{3} \sqrt{64}=\frac{4}{3} \times 8 \\
& =\frac{32}{3} \text { sq.units }
\end{aligned}
$$

Ex.18: Find the area bounded by the curve $y^{2}=4 x$ and $x^{2}=4 y$
Soln.: The required area is area enclosed between the two parabolas $y^{2}=4 x$ and $x^{2}=4 y$ both intersecting at the points $(0,0)(4,4)$

$$
\text { Now } y^{2}=4 x
$$

Squaring both the sides

$$
\begin{array}{llrl}
& \therefore & y^{4} & =4^{2} \cdot x^{2} \\
& y^{4} & =4^{2} \cdot 4 y \\
& y^{4} & =4^{3} y \\
& y^{4}-4^{3} y & =0 \\
& y\left(y^{3}-4^{3}\right) & =0 \\
\therefore & y & =0, y=4 \text { for } y=4, y^{2}=4 x \\
\therefore & & 4 x=4^{2} \\
\therefore & x=4
\end{array}
$$

Therefore required area $A=A_{1}-A_{2}$
Where $A_{1}=$ area bounded by $y^{2}=4 x$ and ordinate $x=4$

Marathwada Mitra Mandal's Polytechnic.

$$
\begin{aligned}
& A_{2}=\text { area bounded by } x^{2}=4 y \text { and ordinate } x=4 \\
\therefore & \text { Required area }=\int_{x=0}^{x=4} y \cdot d x-\int_{x=0}^{x=4} y \cdot d x=\int_{x=0}^{x=4} \sqrt{4} \cdot x^{1 / 2} d x-\int_{x=0}^{x=4} \frac{x^{2}}{4} d x
\end{aligned}
$$

Marathwada Mitra Mandal's Polytechnic.

Home work
Ex.19: Find the area enclosed by the two parabolas $y^{2}=x$ and $x^{2}=y$

Ex.20: Find the area bounded between two parabolas $y^{2}=9 x$ and $x^{2}=9 y$ Soln.: The required area is the area enclosed between the two parabolas

$$
y^{2}=9 x \text { and } x^{2}=9 y \text { both intersecting at the points }(0,0)(9,9)
$$

Ex.20: Find the area between the parabolas $y=x^{2}+3$ and line $y=x+3$
Soln.: The required area is the area enclosed between the two parabolas Given equation of curve
First we will find the ordinates of x and y as follows

x	-2	-1	0	1	2
y	7	4	3	4	7

By using these ordinates plot the curve as shown in fig.
To find points of intersection of the curves

$$
y=x^{2}+3 \text { And } y=x+3
$$

Putting $\quad y=x+3$ in $y=x^{2}+3$
$\therefore \quad x+3=x^{2}+3$
$\therefore \quad x^{2}-x=0 \quad \quad \ldots . x(x-1)=0$
$\therefore \quad x=0$ or $x=1$
When $\quad x=0, \quad y=0+3=3$
\therefore one point of intersection is $(0,3)$
When $\quad x=1, \quad y=1+3=4$
\therefore other point of intersection is $(1,4)$

$$
\begin{aligned}
\therefore \text { Required area } & =\int_{0}^{1}\left[(x+3)-\left(x^{2}+3\right)\right) d x \\
& =\int_{0}^{1}(x+3) d x-\int_{0}^{1}\left(x^{2}+3\right) d x \\
& =\int_{0}^{1} x d x+\int_{0}^{1} 3 d x-\left[\int_{0}^{1} x^{2} d x+\int_{0}^{1} 3 d x\right] \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{1}+3[x]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1}-3[x]_{0}^{1} \\
& =\frac{1}{2}\left[1^{2}-0\right]+3[1-0]-\frac{1}{3}\left[1^{3}-0\right]-3[1-0] \\
& =\frac{1}{2}+3-\frac{1}{3}-3 \\
& =\frac{1}{2}-\frac{1}{3}=\frac{3-2}{6}=\frac{1}{6}
\end{aligned}
$$

Marathwada Mitra Mandal's Polytechnic.

Home work
Ex.21: Find the area of the bounded by the curve $y^{2}=2 x$ and $y=4 x-1$

3.Mean and RMS values.

With the help of Definite Integral Average or Mean value of the function $y=f(x)$ can be calculated. Therefore If $y=f(x)$ is integrable over the interval $a \leq x \leq b$ or $[a, b]$, then the mean value of the function $y=f(x)$ over $[a, b]$ is given by the formula,
\bar{Y} or $Y_{\text {mean }}$ or $Y_{\text {avg }}=\frac{1}{b-a} \int_{a}^{b} y d x=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

Note:-

1. Trignometric functions 'sinx' and 'cosx' are periodic with period 2π.
2. The period of 'sinpx' and 'cospx' is $T=\frac{2 \pi}{P}$.
3. Therefore for period T of Function $y=f(x)$,

$$
\bar{Y} \text { or } Y_{\text {mean }} \text { or } Y_{\text {avg }}=\frac{1}{T} \int_{a}^{b} y d x=\frac{1}{T} \int_{a}^{b} f(x) d x
$$

Examples1: Find the mean value of the function $y=4-x^{2}$ over $[0,2]$.
Solution:
Given: $y=4-x^{2}$ over $[0,2] \quad \therefore \mathrm{a}=0, \mathrm{~b}=2$
The mean value of the function $y=f(x)$ over $[a, b]$ is given by,

$$
\begin{aligned}
Y_{\text {mean }} & =\frac{1}{b-a} \int_{a}^{b} y d x \\
& =\frac{1}{2-0} \int_{0}^{2} 4-x^{2} d x
\end{aligned}
$$

Marathwada Mitra Mandal's Polytechnic.

$$
\begin{aligned}
& =\frac{1}{2}\left[4 \int_{0}^{2} d x-\int_{0}^{2} x^{2} d x\right] \\
& =\frac{1}{2}\left[4 \int_{0}^{2} d x-\int_{0}^{2} x^{2} d x\right] \\
& =\frac{1}{2}\left[4 x_{0}^{2}-\frac{x^{3}}{3}{ }_{0}^{2}\right] \\
& =\frac{1}{2}\left[8-\frac{8}{3}\right] \\
& =\frac{8}{3} .
\end{aligned}
$$

Examples2: Find the mean value of the function $y=x \cdot \sqrt{x^{2}+3}$ in the range over $0 \leq x \leq 1$. Solution:
Here: $y=f(x)=x \cdot \sqrt{x^{2}+3}, \mathrm{a}=0, \mathrm{~b}=1$
The mean value of the function $y=f(x)$ over the range $0 \leq x \leq 1$ is given by,

$$
\begin{aligned}
Y_{\text {mean }} & =\frac{1}{b-a} \int_{a}^{b} y d x \\
& =\frac{1}{1-0} \int_{0}^{1} x \cdot \sqrt{x^{2}+3} d x \\
& =\int_{0}^{1} x \cdot \sqrt{x^{2}+3} d x
\end{aligned}
$$

The integral is evaluated by the method of substitution.
Taking $x^{2}+3=t \quad \therefore 2 x d x=d t$ or $x \cdot d x=\frac{d t}{2}$
When $x=0, \quad t=0+3=3$
When $x=1, \quad t=1+3=4$
Then, the above integral (1) becomes,

$$
Y_{\text {mean }}=\frac{1}{b-a} \int_{3}^{4} \sqrt{t} \cdot \frac{d t}{2}
$$

Examples3: Find the mean value of the function $y=x^{2}-4 x+3$ between the points where it cut x -axis.
Solution:

The Curve $y=x^{2}-4 x+3$ cuts the x -axis in the points where $y=0$.putting $y=0$
in $y=x^{2}-4 x+3$ we get,
$\therefore x^{2}-4 x+3=0$
Factorizing, we have, $(x-3)(x-1)=0$
$\therefore x=3$ or $x=1$.
\therefore Two points on x -axis are: $(1,0)$ and $(3,0)$.
The mean value of $y=f(x)$ over the range $1 \leq x \leq 3$ is:
Then, the above integral (1) becomes,

$$
\begin{aligned}
Y_{\text {mean }} & =\frac{1}{b-a} \int_{a}^{b} y \cdot d x \\
& =\frac{1}{3-1} \int_{1}^{3}\left(x^{2}-4 x+3\right) d x \\
& =\frac{1}{2}\left[\int_{1}^{3} x^{2} \cdot d x-4 \int_{1}^{3} x \cdot d x \cdot+3 \int_{1}^{3} d x\right]
\end{aligned}
$$

Examples4: Find the mean value of the $I=10 \sin 100 \pi t$ over a complete period.
Solution:
Given the function as $I=10 \sin 100 \pi t$
Comparing with $\sin p t$, we have $p=100 \pi$

Marathwada Mitra Mandal's Polytechnic.
\therefore Period of the function, $T=\frac{2 \pi}{P}=\frac{2 \pi}{100 \pi}=\frac{1}{50}$
Then, the mean value of the function $y=f(x)$ having period T is given by,

$$
\begin{aligned}
Y_{\text {mean }} & =\frac{1}{T} \int_{0}^{T} I \cdot d t \\
& =\frac{1}{\frac{1}{50}} \int_{0}^{1 / 50} 10 \cdot \sin (100 \pi t) \cdot d t
\end{aligned}
$$

Remark - The mean value of trigonometric functions over a complete period is zero.
Homework.

Examples5: An alternating current is given by $i=20 \sin 100 t$. Find the mean value of ' i^{2}, over a complete period.

Marathwada Mitra Mandal's Polytechnic.

Examples6: The instantaneous value of an alternating current in amperes is given by $i=20 \sin \omega t+\sin 3 \omega t$. Find the mean value of the current over the range $i=0$ to $i=\frac{\pi}{\omega}$.

ROOT MEAN SQUARE (R.M.S.) VALUE:

The R.M.S. value of the function $y=f(x)$ over $[a, b]$ is given by the formula,
$Y_{\text {r.m.s. }}=\sqrt{\frac{1}{b-a} \int_{a}^{b} y^{2} d x}$
Note:-

1) The R.M.S. value is also called the effective value. Therefore $Y_{r . m . s .}=Y_{\text {eff }}$
2) The R.M.S. value is generally applied only to periodic functions.
3) The R.M.S. value of any sinusoidal waveform taken over an interval equal to one period is $\frac{1}{\sqrt{2}}$ times amplitude of the waveform.
4) Mean values and R.M.S. values are very Useful in calculating current, e.m.f......etc.

Example1: Find the R.M.S. value of the function $f(x)=x^{2}$ over the interval $1 \leq x \leq 3$.

Solution:

Given, $y=f(x)=x^{2}$ and interval $1 \leq x \leq 3 . \therefore \mathrm{a}=1, \mathrm{~b}=3$.
The R.M.S. value of the function $y=f(x)$ over $[a, b]$ is given by the formula,

$$
\begin{equation*}
Y_{\text {r.m.s. }}=\sqrt{\frac{1}{b-a} \int_{a}^{b} y^{2} d x} \tag{1}
\end{equation*}
$$

Where

$$
\begin{aligned}
I & =\int_{1}^{3} y^{2} d x=\int_{1}^{3}\left(x^{2}\right)^{2} d x \\
& =\int_{1}^{3} x^{4} d x \\
& =\left[\frac{x^{5}}{5}\right]_{1}^{3} \\
& =\frac{242}{5}
\end{aligned}
$$

Therefore, from (1) we have:

Marathwada Mitra Mandal's Polytechnic.

$$
Y_{\text {r.m.s. }}=\sqrt{\frac{1}{3-1} \cdot \frac{242}{5}}=4.92
$$

Example 2: Find the R.M.S. value of the function $f(t)=\sin w t+\cos w t$ over [0,1] Solution:
Given, $y=f(t)=\sin w t+\cos w t$ over $[0,1] \therefore \mathrm{a}=0, \mathrm{~b}=1$.
Then, $\quad Y_{\text {r.m.s. }}=\sqrt{\frac{1}{b-a} \int_{a}^{b} y^{2} d t}$
Where $\quad I=\int_{a}^{b} y^{2} d t=\int_{0}^{1}(\sin w t+\cos w t)^{2} d t$

$$
=\int_{0}^{1}\left(\sin ^{2} w t+2 \sin w t \cdot \cos w t+\cos ^{2} w t\right) d t
$$

Note that $\sin ^{2} w t+\cos ^{2} w t=1$ and $2 \sin w t \cdot \cos w t=\sin (2 w t)$

$$
\therefore \quad \mathrm{I}=\int_{0}^{1}(1+\sin 2 w t) d t
$$

Example 3: Find the R.M.S. value of the function $I=3 \sin 2 t$ over a complete cycle.

Solution:

Given : $I=3 \sin 2 t$ over a complete cycle
\therefore Period of I is $T=\frac{2 \pi}{P}$ where $\mathrm{p}=2$
Comparing $\sin 2 t$ with $\sin p t$.
$\therefore T=\frac{2 \pi}{2}=\pi$

Examples4: Find R.M.S. value of an alternating current $i=5 \sin 200 \pi t$.
Solution:
Given $i=5 \sin 200 \pi t$
Comparing $\sin 200 \pi t$ with $\sin \pi t, \sin 200 \pi t$
\therefore Period of the function, $T=\frac{2 \pi}{P}=\frac{2 \pi}{200 \pi}=\frac{1}{100}$
Then $i_{\text {r.m.s. }}^{2}=\frac{1}{T} \int_{0}^{T} i^{2} . d t$
....Note that we are taking square of $i_{\text {r.m.s. }}$ to avoid root sign.

Marathwada Mitra Mandal's Polytechnic.

$$
=\frac{1}{\frac{1}{100}} \int_{0}^{1 / 100}\{5 \sin 200 \pi t\}^{2} \cdot d t
$$

Examples5: An alternating current is given by $i=a \sin t$. Find the R.M.S value of the current over a half wave.
Solution:
Given $i=a \sin t$ over a half wave
\therefore The range of the function is $t=0$ to $i=\pi$ (half of 2π)
$\therefore a=0$ to $b=\pi$

HW.
Examples6: Find R.M.S. value of the function $y=a+b \cos x$ over the interval $[0, \pi]$.

4. Volume of solid revolution:-

Consider $y=f(x)$ be a continuous function defied on the interval $[a, b]$. Fig a.
Then, the volume of the solid obtained by revolving the area under $y=f(x)$ from $x=a$ to $x=b$ with x -axis abount x -axis is given by the formula

$$
V=\pi \int_{a}^{b} y^{2} \cdot d x=\pi \int_{a}^{b}[f(x)]^{2} \cdot d x
$$

Similarly, the volume of the solid generated by revolving the area bounded by the curve $x=g(y), \mathrm{y}$-axis and lines $y=c, y=d$ abount y -axis is given by the formula:

$$
V=\pi \int_{y=c}^{y=d} x^{2} \cdot d y=\pi \int_{c}^{d}[g(y)]^{2} . d y \quad \text { Refer Fig. }
$$

Note:

1. If a rectangle is revolved about one of its sides, we obtain a right circular cylinder as the solid of revolution.
2. If a right-angled triangle is revolved about one of its legs, we obtain a right circular cone as the solid of revolution.
3. If a semi-circle is revolved about its diameter, we obtain a sphere of the same radius as the solid of revolution.

Examples1: Find the volume of right circular cone generated by revolving the line $y=\frac{3}{4} x$ about \mathbf{x}-axis between the ordinates $x=0$ to $x=4$
Solution:
The problem is represented diagrammatically as shown in fig.

When the line $y=\frac{3}{4} x$ is revolved about x -axis between the ordinates $x=0$ to $x=4$, the volume of solid cone so generated is given by,

$$
\begin{aligned}
V & =\pi \int_{0}^{4} y^{2} \cdot d x \\
& =\pi \int_{0}^{4}\left(\frac{3}{4} x\right)^{2} \cdot d x \\
& =\frac{9 \pi}{16} \int_{0}^{4} x^{2} \cdot d x==\frac{9 \pi}{16} \frac{x^{3}}{3}
\end{aligned}
$$

Marathwada Mitra Mandal's Polytechnic.

$$
\begin{aligned}
& =\frac{3 \pi}{16} \cdot\left[4^{3}-0\right]==\frac{3 \pi}{16} \times 64 \\
& =3 \pi \times 4=12 \pi \text { cubic units. }
\end{aligned}
$$

Examples2: Find the volume of solid obtained by revolving about x-axis the plane area bounded by the curve $y=2 \sin 3 x, \mathbf{x}$-axis and ordinates $x=0$ to $x=\frac{\pi}{3}$

Solution:

volume of solid of revolution is given by,

$$
\begin{aligned}
V & =\pi \int_{a}^{b} y^{2} \cdot d x \\
& =\pi \int_{0}^{\pi / 3}(2 \sin 3 x)^{2} \cdot d x
\end{aligned}
$$

Examples3: Find the volume generated by revolving semi-circle abount its bounding diameter
OR
Find the volime of a sphere of radius r using integration.
Solution:
Consider a circle with centre at origin, that is, $\mathrm{O}(0.0)$ and radius r , as shown in fig.

The equation of circle with centre at origin and radius r, is

$$
x^{2}+y^{2}=r^{2}, \quad y^{2}=r^{2}-x^{3}
$$

The area of the semi-circle bounded by its diameter, that is, the area under $y=f(x)$ from $x=-r$ to $x=r$ with x -axis is when revolved about x -axis, a solid so obtained is a sphere of the same radius (i.e.r). Its volume is given by,

$$
\begin{aligned}
V & =\pi \int_{-r}^{r} y^{2} \cdot d x \\
& =\pi \int_{-r}^{r}\left(r^{2}-x^{2}\right) d x \quad \ldots \ldots \text { From }(1), y^{2}=r^{2}-x^{3} \\
& =2 \pi \int_{0}^{r}\left(r^{2}-x^{2}\right) d x \quad \ldots \ldots f(x)=r^{2}-x^{2} \text { is even } \\
& =2 \pi\left[r^{2} \int_{0}^{r} d x-\int_{0}^{r} x^{2} d x\right] \quad \int_{-a}^{a} \ldots . . d x=2 \int_{0}^{a} \ldots d x \\
& =2 \pi\left[r^{2} \cdot x^{r} x_{0}-\left.\frac{x^{3}}{3}\right|_{0} r_{0}\right] \\
& =2 \pi\left[r^{2} \cdot(r-0)-\frac{1}{3}\left(r^{3}-0\right)\right] \\
& =2 \pi\left[r^{3}-\frac{r^{3}}{3}\right]=2 \pi\left[\frac{3 r^{3}-r^{3}}{3}\right]=2 \pi \cdot \frac{2 r^{3}}{3}
\end{aligned}
$$

Marathwada Mitra Mandal's Polytechnic.

$$
=\frac{4}{3} \pi r^{3} \text { Cubic units. }
$$

Examples4: Find the volume of the solid generated by revolving the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ about the x -axis.
Solution:
The equation of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
Re-writing for y^{2}, we get

$$
\frac{y^{2}}{4}=1-\frac{x^{2}}{9}=\frac{9-x^{2}}{9}=1
$$

Examples5: Find the volume obtained by revolving the area under the curve $9 x^{2}-4 y^{2}=36$ in the interval from $x=2$ to $x=4$ about \mathbf{x}-axis.

Solution:

The equation of the curve is $9 x^{2}-4 y^{2}=36$ (which is a hyperbola)

$$
9 x^{2}-4 y^{2}=36 \text { or } y^{2}=\frac{9}{4}\left(x^{2}-4\right)
$$

Examples6: Find the formula for the volume of a right circular cone of height ' h ' and base radius ' r ' by using integration.
Solution:
In fig.

For two similar triangles their corresponding sides are in production.

$$
\begin{aligned}
& \therefore \frac{y}{x}=\frac{r}{h} \\
& \therefore y=\frac{r}{h} \cdot x
\end{aligned}
$$

Now, the volume of right circular cone is given by

$$
V=\pi \int_{0}^{h} y^{2} \cdot d x
$$

Examples7: Find the volume of the solid obtained by revoliving the region bounded by the curve $y=x$ and $y=x^{2}$ about \mathbf{x}-axis.
Solution:
The point of intersection of the curves $y=x$ and $y=x^{2}$ are obtained equating (for y)them.
$\therefore x=x^{2} \quad \therefore x^{2}-x=0 \quad \therefore x(x-1)=0 \quad \therefore x=0$ or $x=1$
When $x=0$ or $y=0 \quad \therefore$ one point of intersection is $(0,0)$
When $x=1$ or $y=1 \quad \therefore$ one point of intersection is $(1,1)$
The area of revolution to get solid is as shown in fig.

Marathwada Mitra Mandal's Polytechnic.

Where $y_{1}=x \quad \therefore y_{1}^{2}=x^{2}$

$$
y_{2}=x^{2} \quad \therefore y_{2}^{2}=x^{4}
$$

The required volume of the solid obtained by revolving the shaded area is given by,

$$
V=\pi \int_{0}^{1}\left(y_{1}^{2}-y_{2}^{2}\right) d x
$$

Examples8: The loop of the curve $y^{2}=x(x-1)^{2}$ is rotated about the x-axis. Find the volume of the solid so generated.
Solution:
The graph of the curve $y^{2}=x(x-1)^{2}$ is as shown in the fig.

Marathwada Mitra Mandal's Polytechnic.

The graph intersects x-axis in the point where $y=0$

$$
\therefore 0=x(x-1)^{2} \quad \therefore x=0 \text { or } x=1
$$

Point of intersection are $(0,0)$ and $(1,0)$
The required volume of the solid generated by revolving the shaded area about x -axis is given by,

$$
\begin{aligned}
V & =\pi \int_{0}^{1} y^{2} \cdot d x \\
& =\pi \int_{0}^{1} x(x-1)^{2} \cdot d x
\end{aligned}
$$

