3 Mensuration

TASK 3.1

Give answers to one decimal place if necessary.
Find the area of each shape below. All lengths are in cm .

2.

3.

4. The area of the parallelogram is equal to the area of the trapezium. Find the value of x.

5. Find the shaded area.

6. Find the shaded area.

7. Find the area of each shape. All arcs are either semi-circles or quarter circles and the units are cm .
a

b

c

8. Find each shaded area below. All lengths are in cm .
a

b

c

9. A circular pond has a radius of 13 m . A path goes all the way round the circumference of the pond. The path is 1.2 m wide throughout.
Find the area of the path.
10. Calculate the radius of a circle of area $68 \mathrm{~cm}^{2}$.
11. The area of this parallelogram is $112.5 \mathrm{~cm}^{2}$. Calculate the value of x.
12. Find the area of this regular pentagon.

TASK 3.2

Find the area of each triangle below, giving the answer to one decimal place.
1.

2.

3.

Find the value of the letter in each triangle below.
4.

5.

6.

7. area triangle $\mathrm{ABC}=48 \mathrm{~cm}^{2}$ area triangle $\mathrm{ABD}=120 \mathrm{~cm}^{2}$ Calculate the length of $C D$.

8.

The area of this triangle is equal to the area of this trapezium. Calculate the value of x.

TASK 3.3

1. What is the radius of a circle if the diameter is 46 cm ?
2. What is the diameter of a circle if the radius is 19 mm ?
3. Use a calculator to find the circumference of each circle below (give answers to 1 d.p.)
a

b

c

d

4. Which shape has the larger perimeter - the triangle or the circle?

5. Which circle has the larger perimeter?

A

Calculate the perimeter of each shape. All arcs are either semi-circles or quarter circles. Give answers correct to 1 d.p.
6.

7.

8.

9.

10.

11.

12. A circular \log of diameter 30 cm is rolled down a hill. It rolls 48 metres. How many complete revolutions did the log make before it stopped?
13. Sanaa has a bike with wheels of radius 31.5 cm . She cycles 3 km . How many times do the wheels of her bike go round completely?

TASK 3.4

Calculate the area of each circle below, correct to $1 \mathrm{~d} . \mathrm{p}$.
1.

2.

3.

4.

5. A circular pond has a radius of 11 m . What is the area of this pond in m^{2} ?
6. Which shape has the larger area - the triangle or the circle?

7. Find the shaded area.

In Questions 8 to $\mathbf{1 0}$ find the area of each shape. All arcs are either semi-circles or quarter circles and the units are cm .
Give answers correct to $1 \mathrm{~d} . \mathrm{p}$.
8.

9.

10.

In Questions $\mathbf{1 1}$ to $\mathbf{1 3}$ find the shaded area. Lengths are in cm . Give answers correct to $1 \mathrm{~d} . \mathrm{p}$.
11.

12.

13.

14. A circular pond has a radius of 13 m . A path goes all the way round the circumference of the pond. The path is 1.2 m wide throughout. Find the area of the path.

TASK 3.5

In this task, O is always the centre of the circle. Give answers to $1 \mathrm{~d} . \mathrm{p}$.

1. Find the length of arc AB .

2. Find the length of arc $A B$.

3. The $\operatorname{arc} \mathrm{PQ}=9 \mathrm{~cm}$. Find angle POQ .

In Questions 4 to 6, find the perimeter of each shape, leaving answers in terms of π.
4.

5.

6.

7. Use a calculator to find the perimeter of the shaded area.

8. Use a calculator to find the perimeter of the shaded area.

TASK 3.6

In this task, O is always the centre of the circle. Give answers to $1 \mathrm{~d} . \mathrm{p}$.
In Questions 1 to 3, find each shaded area.
1.

2.

3.

4. Show that the area of this sector is exactly $\frac{16 \pi}{9} \mathrm{~cm}^{2}$.

5. ODC is a sector of radius 4 cm .

Find the shaded area, leaving your answer in terms of π.

6. Find the value of A if the area of the sector is $90 \mathrm{~cm}^{2}$.

7. Find the area of the shaded segment.

8. If $\mathrm{AB}=13 \mathrm{~cm}$, find the area of the shaded segment.

TASK 3.7

Remember $1 \mathrm{~m}^{3}=10001=1000000 \mathrm{~cm}^{3}$ $1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}$

1. Find the volume of each prism below:
a

2. Which is the greater amount? $7 \cdot 2 \mathrm{~m}^{3}$ or $7090000 \mathrm{~cm}^{3}$
3. True or false? $6.3 \mathrm{~m}^{2}=630 \mathrm{~cm}^{2}$
4. A rectangular tank has a length of 8 m and a width of 6 m . How high is the tank if it can hold 240000 litres of water when full?
5. Copy and complete
a $4 \mathrm{~m}^{3}=\square \mathrm{cm}^{3}$
b $2 \cdot 9 \mathrm{~m}^{3}=\square \mathrm{cm}^{3}$
c $8 \mathrm{~m}^{2}=\square \mathrm{cm}^{2}$
d $7.48 \mathrm{~m}^{2}=\square \mathrm{cm}^{2}$
e $6000000 \mathrm{~cm}^{3}=\square \mathrm{m}^{3}$
f $6 \mathrm{~m}^{3}=\square$ litres
g $6000000 \mathrm{~cm}^{2}=\square \mathrm{m}^{2}$
h $5 \cdot 16 \mathrm{~m}^{3}=\square$ litres
i $38000 \mathrm{~cm}^{2}=\square \mathrm{m}^{2}$
6. Find the 'exact' volume of each prism below, leaving your answers in
terms of π.
a

b

7. A pipe of diameter 8 cm and length 3 m is half full of water. How many litres of water are in the pipe?

8. Find the volume of this prism.

9. A cylindrical bucket has a diameter of 30 cm and a height of 35 cm . How many full bucket loads of water are needed to fill up the tank opposite?

10. The height of a cylinder of capacity 3.5 litres is twice its radius. Calculate the radius of the cylinder.

TASK 3.8

$$
\begin{array}{lccc}
\text { Remember } & \text { sphere } & \text { pyramid } & \text { cone } \\
& \text { volume }=\frac{4}{3} \pi r^{3} & \text { volume }=\frac{1}{3} \times(\text { base area }) \times h & \text { volume }=\frac{1}{3} \pi r^{2} h
\end{array}
$$

In this task, give answers to 3 significant figures where necessary.

1. Find the volume of each solid.
a

b

c

2. A hemisphere and a cone are both made from the same material. The cone has a base diameter of 8 cm and a perpendicular height of 6 cm . The hemisphere has a diameter of 7 cm . Which solid weighs more?
3. A sphere has a volume of $80 \mathrm{~cm}^{3}$. Find the radius of the sphere.
4. Find the 'exact' volume of each solid, leaving your answers in terms of π.

b

(hemisphere on a cylinder)
5. A bowl is in the shape of a hemisphere with diameter 18 cm . Water is poured into the bowl at a rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. How long will it take to fill the bowl completely?

6. A pyramid has a square base of side length 8 cm and a perpendicular height of 17 cm . The pyramid has the same volume as a cone of base radius 6.5 cm . Find the perpendicular height of the cone.
7. A metal cylinder has diameter 4.8 cm and a height of 8.3 cm . 75 identical cylinders are melted down to make a single sphere. Calculate the diameter of the sphere.

TASK 3.9

Remember sphere surface area $=4 \pi r^{2}$ curved surface area $=2 \pi r h$ curved surface area $=\pi r l$ where l is the slant height

In this task, give answers to 3 significant figures where necessary.

1. Find the curved surface area of each solid.
a

b

c

2. Find the total surface area of this cone, leaving your answer in terms of π.

3. A sphere has a surface are of $480 \mathrm{~cm}^{2}$. Calculate its diameter.
4. The curved surface area of a hemisphere is $72 \pi \mathrm{~cm}^{2}$. What is the total surface area of the hemisphere?
5. A cone is attached to a cylinder of diameter 15 cm as shown. The perpendicular heights of the cylinder and the cone are both equal to the diameter of the cylinder. Find the total surface area of the combined solid.

6. A cylinder has a radius of 2 cm and a height of 10 cm . A cone has a radius of 3 cm . The total surface area of the cone is equal to the total surface area of the cylinder. Show that the perpendicular height of the cone is $4 \sqrt{10} \mathrm{~cm}$.

TASK $\mathbf{3 . 1 0}$

Use
 to help you work out the questions below.

1. A solid weighs 450 g and has a volume of $50 \mathrm{~cm}^{3}$. Find the density of this solid.
2. A liquid has a density of $2 \mathrm{~g} / \mathrm{cm}^{2}$. How much does the liquid weigh if its volume is $240 \mathrm{~cm}^{3}$?
3. A metal bar has a density of $12 \mathrm{~g} / \mathrm{cm}^{3}$ and a mass of 360 g . Find the volume of the metal bar.
4. Copy and complete this table.

density $\left(\mathrm{g} / \mathbf{c m}^{\mathbf{3}}\right)$	mass (g)	volume $\left(\mathbf{c m}^{\mathbf{3}}\right)$
7		90
	240	60
8	152	
	42	$0 \cdot 5$
13	585	
$1 \cdot 5$		140

5. Gold has a density of $19 \cdot 3 \mathrm{~g} / \mathrm{cm}^{3}$. A gold ring has a volume of $1 \cdot 1 \mathrm{~cm}^{3}$.

Find the mass of the gold ring.
6. A brass handle has a volume of $17 \mathrm{~cm}^{3}$ and a mass of $139 \cdot 4 \mathrm{~g}$.

Find the density of the brass.
7. Which has a greater volume -102.6 g of lead with density $11.4 \mathrm{~g} / \mathrm{cm}^{3}$ or 78.85 g of steel with density $8.3 \mathrm{~g} / \mathrm{cm}^{3}$? Write down by how much.
8. The density of this metal bar is $7.4 \mathrm{~g} / \mathrm{cm}^{3}$.

Find the mass of this metal bar. Give your answer in kg. (Note the length is given in metres.)

9. A metal cube of length 0.2 m has a density of $8.3 \mathrm{~g} / \mathrm{cm}^{3}$. A hole is bored through the cube with $485 \mathrm{~cm}^{3}$ of metal being removed. What is the mass in kg of the remaining piece of metal?
10. A metal bar has 3 holes cut completely through its length. The cross-sectional area of each hole is $y \mathrm{~cm}^{2}$. The density of the metal is $9 \mathrm{~g} / \mathrm{cm}^{3}$.
Find the mass of the remaining piece of metal, giving your answer in terms of x and y.

