## MENSURATION

## Definition

1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids.
2. Plane Mensuration : It deals with the sides, perimeters and areas of plane figures of different shapes.
3. Solid Mensuration : It deals with the areas and volumes of solid objects.

## Right Angled Triangle :

$$
(A C)^{2}=(A B)^{2}+(B C)^{2}
$$

or, $h^{2}=p^{2}+b^{2}$
If $A C=5 m, A B=4 m$ then

$$
\begin{aligned}
(B C)^{2} & =(A C)^{2}-(A B)^{2} \\
& =25-16=9
\end{aligned}
$$

## Important Formulae

$\therefore B C=3 m$


Rectangle : A rectangle is a plane,
Whose opposite sides are equal and diagonals are equal. Each angle is equal to $90^{\circ}$.

Here

$$
\begin{aligned}
& A B=C D ; \text { length } I=4 m \\
& A D=B C ; \text { breadth } b=3 m
\end{aligned}
$$

1. Perimeter of a rectangle $=2$ (length + breadth $)$

$$
\begin{aligned}
& =2(l+b) \\
& =2(4+3)=14 \mathrm{~m}
\end{aligned}
$$

2. Area of rectangle $=$ length $\times$ breadth $=I \times b=4 \times 3$

$$
=12 \mathrm{~m}^{2}
$$

3. Length of a rectangle : $\frac{\text { area }}{\text { breadth }}=\frac{A}{b}=\frac{12}{3}=4 \mathrm{~m}$ or, $\left[\frac{\text { perimeter }}{2}-\right.$ breadth $]=\left(\frac{14}{2}-3\right)=4 \mathrm{~m}$ Breadth of a rectangle : $\frac{\text { area }}{\text { length }}=\frac{A}{l}=\frac{12}{4}=3 \mathrm{~m}$ or, $\left[\frac{\text { perimeter }}{2}\right.$ - length $]=\left(\frac{14}{2}-4\right)=3 \mathrm{~m}$
4. Diagonal of rectangle $: \sqrt{(\text { length })^{2}+(\text { breadth })^{2}}$

$$
\begin{aligned}
& =\sqrt{l^{2}+b^{2}}=\sqrt{4^{2}+3^{2}} \\
& =\sqrt{16+9}=\sqrt{25}=5 \mathrm{~m}
\end{aligned}
$$

Square : A square is a plane figure
Bounded by four equal sides having all its angle as right angles.

Here $A B=B C=C D=A D=5 \mathrm{~m}=\mathrm{a}$ (Let)

1. Perimeter of square $=4 \times$ sides $=4 a$

$$
=4 \times 5=20 \mathrm{~m}
$$

2. Area of a square $=(\text { sides })^{2}=a^{2}=(5)^{2}=25$ sq. $m$

3. Side of a square $=\sqrt{\text { area }}=\sqrt{25}=5 \mathrm{~m}$ or, $\frac{\text { Perimeter }}{4}=\frac{20}{4}=5 \mathrm{~m}$
4. Diagonal of a square $=\sqrt{2} \times$ side $=\sqrt{2}$ a

$$
=\sqrt{2} \times 5=5 \sqrt{2} \mathrm{~m}
$$

5. Side of a square $=\frac{\text { diagonal }}{\sqrt{2}}=\frac{5 \sqrt{2}}{\sqrt{2}}=5 \mathrm{~m}$

Triangle :

1. Area of triangle $=\frac{1}{2} \times$ base $\times$ height $=\frac{1}{2} \times b \times h$

$$
=\frac{1}{2} \times 15 \times 12=90 \mathrm{sq} . \mathrm{cm}
$$


here $A D=12 \mathrm{~cm}=$ height, $B C=15 \mathrm{~cm}=$ base
2. Semi perimeter of a triangle

$$
\mathrm{S}=\frac{a+b+c}{2}=\frac{10+8+6}{2}=12 \mathrm{~cm}
$$

$$
\text { here } B C=a, A C=b, A B=c
$$

3. Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
where $a=10 \mathrm{~cm}, \mathrm{~b}=8 \mathrm{~cm}, \mathrm{c}=6 \mathrm{~cm}, \mathrm{~s}=12 \mathrm{~cm}$

$$
\begin{aligned}
& =\sqrt{12(12-10)(12-8)(12-6)} \\
& =\sqrt{12 \times 2 \times 4 \times 6}=24 \mathrm{~cm}^{2}
\end{aligned}
$$

4. Perimeter of a triangle $=2 s=(a+b+c)$


$$
=10+8+6=24 \mathrm{~cm}
$$

5. Area of an equilateral triangle $=\frac{\sqrt{3}}{4} \times(\text { side })^{2}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4} \times(4 \sqrt{3})^{2} \\
& =\frac{\sqrt{3}}{4} \times 48=12 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

6. Height of an equilateral triangle $=\frac{\sqrt{3}}{2} \times(\text { side })^{2}=\frac{\sqrt{3}}{2} \times 4 \sqrt{3}$

$$
=6 \mathrm{~cm}
$$

7. Perimeter of an equilateral triangle $=3 \times$ (side)

$$
=3 \times 4 \sqrt{3}=12 \sqrt{3} \mathrm{~cm}
$$

## Quadrilateral :

## Parallelogram :

(i) Area of parallelogram = base $x$ height

$$
\begin{aligned}
& =b \times h \\
& =8 \times 5=40 \text { sq.cm. }
\end{aligned}
$$

(ii) Perimeter of a parallelogram $=2(A B+B C)$


$$
=2(8+5)=26 \mathrm{~cm}
$$

## Rhombus:

(i) Area of rhombus $=\frac{1}{2} \times$ (product of diagonals)

$$
=\frac{1}{2}\left(d_{1} \cdot d_{2}\right)=\frac{1}{2} \times 8 \times 6=24 \mathrm{~cm}^{2}
$$

(ii) Perimeter of rhombus $=4 \times$ side $=4 \mathrm{a}$ here $A B=B C=C D=A D=4 a$

$$
\mathrm{AC}=\mathrm{d}_{1}, \mathrm{BD}=\mathrm{d}_{2}
$$



## Trapezium :

(i) Area if a trapezium $=\frac{1}{2} \times$ (sum of parallel sides) x height

$$
\begin{aligned}
& =\frac{1}{2} \times(a+b) \times h \\
& =\frac{1}{2} \times(15+17) \times 10
\end{aligned}
$$

$$
=\frac{1}{2} \times 32 \times 10=160 \mathrm{~cm}^{2}
$$



## Regular Hexagon :

(i) Area of a regular hexagon $=6 \times \frac{\sqrt{3}}{4} \times(\text { side })^{2}$
(ii) Perimeter of a regular hexagon $=6 x$ (side)

## Circle :

(i) Circumference of a circle $=\pi \times$ diameter

$$
=\pi \times 2 r=2 \pi r
$$

$$
=2 \times \frac{22}{7} \times 42=264 \mathrm{~cm}
$$

(ii) Radius of a circle $=\frac{\text { circumference }}{2 \pi}=\frac{264 \times 7}{2 \times 22}=42 \mathrm{~cm}$
(iii) Area of a circle $=\pi \times \mathrm{r}^{2}=\frac{22}{7} \times 42^{2}=\frac{22}{7} \times 42 \times 42=5544 \mathrm{~cm}^{2}$
(iv) Radius of a circle $=\sqrt{\frac{\text { area }}{\pi}}$

$$
=\sqrt{\frac{5544}{22} \times 7}=\sqrt{1764}=42 \mathrm{~cm}
$$

(v) Area of a semi circle $=\frac{1}{2} \pi \mathrm{r}^{2}=\frac{1}{8} \pi \mathrm{~d}^{2}$

$$
=\frac{1}{2} \times \frac{22}{7} \times 42^{2}=2772 \mathrm{~cm}^{2}
$$

(vi) Circumference of semi circle $=\frac{22}{7} \times 42=132 \mathrm{~cm}$
(vii) Perimeter of semi circle $=(\pi r+2 r)=(\pi+2) r=(\pi+2) \frac{d}{2}$
(viii) Area of sector $\mathrm{OAB}=\frac{x}{360} \times \pi \mathrm{r}^{2}$
( $x$ being the central angle)
$=\frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 3.5 \times 3.5=3.21$ sq. m .
(ix) Central angle by arc $\mathrm{AB}=360^{\circ} \times \frac{\text { area of } O A B}{\text { area of circle }}$

$$
=360^{\circ} \times \frac{3.21}{\frac{22}{7} \times 3.5 \times 3.5}=\frac{360 \times 321}{22 \times 35 \times 5}=30^{\circ}(\text { approx })
$$


$r$
$=\pi R^{2}-\pi r^{2}=\left(R^{2}-r^{2}\right)$
$=\pi(\mathrm{R}+\mathrm{r})(\mathrm{R}-\mathrm{r})$
$=$ (sum of radius)(diff. of radius)
$=\frac{22}{7} \times(4+3)(4-3)=\frac{22}{7} \times 7 \times 1$
$=22 \mathrm{sq} . \mathrm{cm}$.

## Cuboid and Cube :

(i) Total surface area of cuboid
$=2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl})$ sq. unit
Here $\mathrm{I}=$ length, $\mathrm{b}=$ breadth, $\mathrm{h}=$ height
$=2(12 \times 8+8 \times 6+6 \times 12)$
$=2(96+48+72)=2 \times 216=432$ sq. cm .
(ii) Volume of a cuboid $=$ (length $\times$ breadth $\times$ height $)=$ lbh


$$
=12 \times 8 \times 6=576 \text { cuboic } \mathrm{cm}
$$

(iii) Diagonal of a cuboid $=\sqrt{l^{2}+b^{2}+h^{2}}=\sqrt{12^{2}+8^{2}+6^{2}}$

$$
=\sqrt{144+64+36}=\sqrt{244}=2 \sqrt{61} \mathrm{~cm} .
$$

(iv) Length of cuboid $=\frac{\text { Volume }}{\text { Breadth } \times \text { Height }}=\frac{v}{b \times h}$
(v) Breadth of cuboid $=\frac{\text { Volume }}{\text { Length } \times \text { Height }}=\frac{v}{l \times h}$
(vi) Height of cuboid $=\frac{\text { Volume }}{\text { Length } \times \text { Breadth }}=\frac{v}{l \times b}$
(vii) Volume of cube $=(\text { side })^{3}$

$$
\begin{aligned}
& =12^{3} \\
& =1728 \text { cubic } \mathrm{cm}
\end{aligned}
$$

Cube : All sides are equal $=12 \mathrm{~cm}$
(viii) Sides of a cube $=\sqrt[3]{\text { Volume }}$


$$
=\sqrt[3]{1728}=12 \mathrm{~cm}
$$

(ix) Diagonal of cube $=\sqrt{3} \times($ side $)=\sqrt{3} \times 12=12 \sqrt{3} \mathrm{~cm}$
(x) Total surface area of a cube $=6 \times(\text { side })^{2}=6 \times 12^{2}=864$ sq.cm

## Right Circular Cylinder :

(i) Area of curved surface
$=($ perimeter of base $) \times$ height
$=2 \pi r \mathrm{~h}$ sq. unit
$=2 \times \frac{22}{7} \times 7 \times 15=660$ sq. cm
(ii) Total surface area = area of circular ends + curved surface area

$$
\begin{aligned}
& =2 \pi r^{2}+2 \pi r h=2 \pi r(r+h) \text { sq. unit } \\
& =2 \times \frac{22}{7} \times 7(15+7) \\
& =2 \times 22 \times 22 \\
& =968 \text { sq. } \mathrm{cm} .
\end{aligned}
$$

(iii) Volume $=($ area of base $) x$ height

$$
\begin{aligned}
& =\left(\pi r^{2}\right) \times h=\pi r^{2} h \\
& =\frac{22}{7} \times 7 \times 7 \times 15=2310 \text { cubic } \mathrm{cm} .
\end{aligned}
$$

(iv) Volume of a hollow cylinder $=\pi R^{2} h-\pi r^{2} h$

$$
\begin{aligned}
& =\pi h\left(R^{2}-r^{2}\right)=\pi h(R+r)(R-r) \\
& =\pi \times \text { height } \times \text { (sum of radii)(difference of radii) }
\end{aligned}
$$

Here R, $r$ are outer and inner radii respectively and $h$ is the height.

## Cone :

(i) In right angled $\triangle \mathrm{OAC}$, we have

$$
I^{2}=h^{2}+r^{2}
$$

$$
\text { (here } r=35 \mathrm{~cm}, \mathrm{l}=37 \mathrm{~cm}, \mathrm{~h}=12 \mathrm{~cm} \text { ) }
$$



Or, $\mathrm{I}=\sqrt{h^{2}+r^{2}}$

$$
\mathrm{h}=\sqrt{l^{2}-r^{2}}, \mathrm{r}=\sqrt{l^{2}-h^{2}}
$$

where $\mathrm{I}=$ slant height, $\mathrm{h}=$ height, $\mathrm{r}=$ radius of base
(ii) Curved surface area $=\frac{1}{2} \times$ (perimeter of base) $x$ slant height

$$
\begin{aligned}
& =\frac{1}{2} \times 2 \pi r \times I=\pi r \text { sq. unit } \\
& =\frac{22}{7} \times 35 \times 37=4070 \text { sq. } \mathrm{cm}
\end{aligned}
$$

(iii) Total surface area $S=$ area of circular base + curved surface area $=\left(\pi r^{2}+\pi r l\right)=\pi r(r+l)$ sq. unit $=\frac{22}{7} \times 35(37+35)=7920$ sq. cm
(iv) Volume of cone $=\frac{1}{3}$ (area of base) $x$ height

$$
\begin{aligned}
& =\frac{1}{3}\left(\pi r^{2}\right) \times h=\frac{1}{3} \pi r^{2} h \text { cubic unit } \\
& =\frac{1}{3} \times \frac{22}{7} \times 35 \times 35 \times 12 \\
& =15400 \text { cubic } \mathrm{cm}
\end{aligned}
$$

## Frustum of Cone :

(v) Volume of frustum $=\frac{1}{3} \pi \mathrm{~h}\left(\mathrm{R}^{2}+\mathrm{r}^{2}+\mathrm{Rr}\right)$ cubic unit
(vi) Lateral surface $=\pi \mid(R+r)$ where $I^{2}=h^{2}+(R-r)^{2}$
(vii) Total surface area $=\pi\left[R^{2}+r^{2}+I(R+r)\right]$
$R$, $r$ be the radius of base and top the frustum


ABB'A' $h$ and I be the vertical height and slant height respectively.

## Sphere :

(i) Surface area $=4 \pi r^{2}$

$$
=4 \times \frac{22}{7} \times(10.5)^{2}=1386 \mathrm{sq} . \mathrm{cm}
$$

$$
\text { here, } \mathrm{d}=21 \mathrm{~cm} \quad \therefore \mathrm{r}=10.5 \mathrm{~cm}
$$

(ii) Radius of sphere $=\sqrt{\frac{\text { surface area }}{4 \pi}}=\sqrt{\frac{1386 \times 7}{4 \times 22}}=10.5 \mathrm{~cm}$
(iii) Diameter of sphere $=\sqrt{\frac{\text { surface }}{4 \pi}}=\sqrt{\frac{1386 \times 7}{22}}=21 \mathrm{~cm}$
(iv) Volume of sphere $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi\left(\frac{d}{2}\right)^{3}=\frac{1}{6} \pi \mathrm{~d}^{3}$

$$
=\frac{1}{6} \times \frac{22}{7} \times 21 \times 21 \times 21=4831 \text { cubic } \mathrm{cm}
$$

(v) Radius of sphere $=\sqrt{\frac{3}{4 \pi} \times \text { Volume of sphere }}$
(vi) Diameter $=\sqrt[3]{\frac{6 \times V}{\pi}}$
(vii) Volume of spherical ring $=\frac{4}{3} \pi\left(\mathrm{R}^{3}-\mathrm{r}^{3}\right)$

(viii) Curved surface of hemisphere $=2 \pi r^{2}$
(ix) Volume of hemisphere $=\frac{2}{3} \pi r^{3}$
(x) Total surface area of hemisphere $=3 \pi r^{2}$

Note : V = volume, $\mathrm{A}=$ area, $\mathrm{h}=$ height, $\mathrm{b}=$ base,breadth, $\mathrm{d}=$ diameter, $\mathrm{R}=$ outer radius, $\mathrm{r}=$ inner radius, $\pi=\frac{22}{7}=3.142, \mathrm{a}=$ side.

## Prism and Pyramid

## Prism

1. Solid : Bodies which have three dimensions in space are called solid. For example, a block of wood.

A body, which has the three dimensions length, breadth and height, is a solid, whereas a rectangle with its two dimensions (length and breadth) is not a solid.
2. Prism : A prism is a solid, bounded by plane faces of which two opposite sides known as bases are parallel and congruent polygons.
3. Base : The congruent and parallel faces of a
prism are called its bases.
The other faces of a prism can be either oblique to the faces or perpendicular to them.
4. Right prism : A right prism is a prism in which lateral sides are rectangular or perpendicular to their bases.
5. Lateral faces: The side faces of a prism are called its lateral faces.
6. Lateral surface area : The area of all the lateral faces of a prism is called its lateral surface area.

Note : In a right prism having polygons of n sides as bases.
(i) the number of vertices $=2$
(ii) the number of edges $=3 n$
(iii) the number of lateral faces $=(n+1)$, and
(iv) all the lateral faces are rectangular.

## Formulae

(i) Volume of a right prism = (Area of its base) $x$ height
(ii) Lateral surface area of a right prism $=($ perimeter of its base $) \times$ height
(iii) Total surface area of a right prism

$$
=(\text { lateral surface area })+2(\text { area of the base })
$$

## Pyramid

1. Pyramid : A solid of triangular lateral
sides having a common vertex and
plane rectilinear bases with equal
sides is called pyramid.
2. Height of the pyramid : The length

of perpendicular drawn from the vertex
of a pyramid to its base is called the
height of the pyramid.
The side faces of pyramid form its lateral surface.
3. Regular pyramid : If the base of a pyramid is a regular figure i.e., a polygon with all sides equal and all angles equal, then it is called a regular pyramid.
4. Right pyramid : If the foot of the perpendicular from the vertex of a pyramid to its base is the centre of the base then it is called a right pyramid.
5. Slant height of a regular right pyramid : The slant height of a regular right pyramid is the length of the line segment joining the vertex to the mid-point of one of the sides of the base.
6. Tetrahedron : When the base of a right pyramid is a triangle, then it is called a tetrahedron.
7. Regular tetrahedron : A right pyramid with equilateral triangle as its base is called a regular tetrahedron.
